Package index
-
explore()
- Explore a dataset or variable
-
explore_all()
- Explore all variables
-
explore_bar()
- Explore categorical variable using bar charts
-
explore_col()
- Explore data without aggregation (label + value)
-
explore_cor()
- Explore the correlation between two variables
-
explore_count()
- Explore count data (categories + frequency)
-
explore_density()
- Explore density of variable
-
explore_shiny()
- Explore dataset interactive
-
explore_targetpct()
- Explore variable + binary target (values 0/1)
-
explore_tbl()
- Explore table
-
interact()
- Make a explore-plot interactive
-
describe()
- Describe a dataset or variable
-
describe_all()
- Describe all variables of a dataset
-
describe_cat()
- Describe categorical variable
-
describe_num()
- Describe numerical variable
-
describe_tbl()
- Describe table
-
explain_forest()
- Explain a target using Random Forest.
-
explain_logreg()
- Explain a binary target using a logistic regression (glm). Model chosen by AIC in a Stepwise Algorithm (
MASS::stepAIC()
).
-
explain_tree()
- Explain a target using a simple decision tree (classification or regression)
-
explain_xgboost()
- Explain a binary target using xgboost
-
balance_target()
- Balance target variable
-
weight_target()
- Weight target variable
-
predict_target()
- Predict target using a trained model.
-
report()
- Generate a report of all variables
-
get_var_buckets()
- Put variables into "buckets" to create a set of plots instead one large plot
-
total_fig_height()
- Get fig.height for RMarkdown-junk using explore_all()
-
plot_legend_targetpct()
- Plots a legend that can be used for explore_all with a binary target
-
create_notebook_explore()
- Generate a notebook
-
abtest()
- A/B testing
-
abtest_shiny()
- A/B testing interactive
-
abtest_targetnum()
- A/B testing comparing two mean
-
abtest_targetpct()
- A/B testing comparing percent per group
-
add_var_id()
- Add a variable id at first column in dataset
-
add_var_random_01()
- Add a random 0/1 variable to dataset
-
add_var_random_cat()
- Add a random categorical variable to dataset
-
add_var_random_dbl()
- Add a random double variable to dataset
-
add_var_random_int()
- Add a random integer variable to dataset
-
add_var_random_moon()
- Add a random moon variable to dataset
-
add_var_random_starsign()
- Add a random starsign variable to dataset
-
create_data_abtest()
- Create data of A/B testing
-
create_data_app()
- Create data app
-
create_data_buy()
- Create data buy
-
create_data_churn()
- Create data churn
-
create_data_empty()
- Create an empty dataset
-
create_data_esoteric()
- Create data esoteric
-
create_data_newsletter()
- Create data newsletter
-
create_data_person()
- Create data person
-
create_data_random()
- Create data random
-
create_data_unfair()
- Create data unfair
-
use_data_beer()
- Use the beer data set
-
use_data_diamonds()
- Use the diamonds data set
-
use_data_iris()
- Use the iris flower data set
-
use_data_mpg()
- Use the mpg data set
-
use_data_mtcars()
- Use the mtcars data set
-
use_data_penguins()
- Use the penguins data set
-
use_data_starwars()
- Use the starwars data set
-
use_data_titanic()
- Use the titanic data set
-
use_data_wordle()
- Use the wordle data set
-
clean_var()
- Clean variable
-
drop_obs_if()
- Drop all observations where expression is true
-
drop_obs_with_na()
- Drop all observations with NA-values
-
drop_var_by_names()
- Drop variables by name
-
drop_var_low_variance()
- Drop all variables with low variance
-
drop_var_no_variance()
- Drop all variables with no variance
-
drop_var_not_numeric()
- Drop all not numeric variables
-
drop_var_with_na()
- Drop all variables with NA-values
-
count_pct()
- Adds percentage to dplyr::count()
-
data_dict_md()
- Create a data dictionary Markdown file
-
decrypt()
- decrypt text
-
encrypt()
- encrypt text
-
get_type()
- Return type of variable
-
guess_cat_num()
- Return if variable is categorical or numerical
-
plot_text()
- Plot a text
-
replace_na_with()
- Replace NA
-
rescale01()
- Rescales a numeric variable into values between 0 and 1
-
simplify_text()
- Simplifies a text string
-
get_color()
- Get predefined colors
-
mix_color()
- Mix colors
-
show_color()
- Show color vector as ggplot
-
yyyymm_calc()
- Calculate with periods (format yyyymm)
-
format_num_auto()
- Format number as character string (auto)
-
format_num_kMB()
- Format number as character string (kMB)
-
format_num_space()
- Format number as character string (space as big.mark)
-
format_target()
- Format target
-
format_type()
- Format type description
-
target_explore_cat()
- Explore categorical variable + target
-
target_explore_num()
- Explore Nuberical variable + target
-
log_info_if()
- Log conditional
-
plot_var_info()
- Plot a variable info
-
check_vec_low_variance()
- Check vector for low variance
-
cut_vec_num_avg()
- Cut a variable