Skip to contents

Simplifies Exploratory Data Analysis:

  • Interactive data exploration using explore()
  • Use AI to unveil hidden patterns in your data (xgboost, RF, logreg, DT)
  • Generate an automated report of your data (or patterns in your data) using report()
  • Manual exploration using explore(), describe(), explain_*(), abtest(), …
  • 18 ready to use datasets for teaching & testing
# install from CRAN
install.packages("explore")

Examples

# interactive data exploration
library(explore)
beer <- use_data_beer()
beer |> explore()

explore variable + target

explore target using a decisoion tree

# describe data
beer |> describe()
# A tibble: 11 × 8
   variable          type     na na_pct unique    min    mean    max
   <chr>             <chr> <int>  <dbl>  <int>  <dbl>   <dbl>  <dbl>
 1 name              chr       0    0      161   NA     NA      NA
 2 brand             chr       0    0       29   NA     NA      NA
 3 country           chr       0    0        3   NA     NA      NA
 4 year              dbl       0    0        1 2023   2023    2023
 5 type              chr       0    0        3   NA     NA      NA
 6 color_dark        dbl       0    0        2    0      0.09    1
 7 alcohol_vol_pct   dbl       2    1.2     35    0      4.32    8.4
 8 original_wort     dbl       5    3.1     54    5.1   11.3    18.3
 9 energy_kcal_100ml dbl      11    6.8     34   20     39.9    62
10 carb_g_100ml      dbl      16    9.9     44    1.5    3.53    6.7
11 sugar_g_100ml     dbl      16    9.9     26    0      0.72    4.6
# explore data manually
beer |> explore(type)
beer |> explore(energy_kcal_100ml)
beer |> explore(energy_kcal_100ml, target = type)
beer |> explore(alcohol_vol_pct, energy_kcal_100ml, target = type)

explore data manual

# explore manually with color and interactive
beer |> 
  explore(sugar_g_100ml, color = "gold") |> 
  interact()

explore with color and interactive