Explain a binary target using a logistic regression (glm). Model chosen by AIC in a Stepwise Algorithm (MASS::stepAIC()
).
Source: R/explain.R
explain_logreg.Rd
Explain a binary target using a logistic regression (glm).
Model chosen by AIC in a Stepwise Algorithm (MASS::stepAIC()
).
Examples
data <- iris
data$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
data$Species <- NULL
explain_logreg(data, target = is_versicolor)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 6.95 2.23 3.12 0.00179
#> 2 Sepal.Width -2.96 0.667 -4.43 0.00000926
#> 3 Petal.Length 1.13 0.462 2.44 0.0148
#> 4 Petal.Width -2.61 1.08 -2.42 0.0156