Artificial data that can be used for unit-testing or teaching (fairness & AI bias)
Usage
create_data_unfair(
obs = 1000,
target_name = "target_ind",
factorise_target = FALSE,
target1_prob = 0.25,
add_id = FALSE,
seed = 123
)
Examples
create_data_unfair()
#> # A tibble: 1,000 × 22
#> age gender eye_color shoe_size iq education income handset pet smoking
#> <int> <chr> <chr> <dbl> <dbl> <int> <dbl> <chr> <chr> <int>
#> 1 46 Female Blue 45.2 141 66 132 Apple Other 0
#> 2 94 Female Green 37 71 41 95 Apple Cat 0
#> 3 66 Male Blue 45 80 49 18 Apple Cat 0
#> 4 29 Male Blue 45 74 49 54 Android Dog 0
#> 5 82 Female Blue 39 119 25 70 Apple Cat 1
#> 6 57 Female Brown 38.2 95 68 128 Android No 0
#> 7 65 Female Brown 41.2 97 87 128. Other Dog 1
#> 8 58 Male Blue 46 135 46 32 Android No 0
#> 9 29 Male Blue 40 88 78 82 Apple No 0
#> 10 40 Male Green 42 140 14 94 Apple Cat 0
#> # ℹ 990 more rows
#> # ℹ 12 more variables: name_arabic <int>, outfit <chr>, glasses <int>,
#> # tatoos <int>, kids <int>, bad_debt <dbl>, credit_card <chr>,
#> # left_handed <int>, skin_color <chr>, religion <chr>, internet_gb <dbl>,
#> # target_ind <int>